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Abstract: Chronic kidney disease (CKD) is a widespread renal disease throughout the world. Once it develops to
the advanced stage, serious complications and high risk of death will follow. Hence, early screening is crucial for
the treatment of CKD. Since ultrasonography has no side effects and enables radiologists to dynamically observe
the morphology and pathological features of the kidney, it is commonly used for kidney examination. In this study,
we propose a novel convolutional neural network (CNN) framework named the texture branch network to screen
CKD based on ultrasound images. This introduces a texture branch into a typical CNN to extract and optimize
texture features. The model can automatically generate texture features and deep features from input images, and
use the fused information as the basis of classification. Furthermore, we train the base part of the network by
means of transfer learning, and conduct experiments on a dataset with 226 ultrasound images. Experimental results
demonstrate the effectiveness of the proposed approach, achieving an accuracy of 96.01% and a sensitivity of 99.44%.
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1 Introduction

Chronic kidney disease (CKD) is a condition
in which kidney function is declining gradually over
time. It is caused mainly by various factors such
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as diabetes and high blood pressure. It is defined
as kidney pathologic lesions or diminished function.
In particular, the glomerular filtration rate (GFR)
is lower than 60 mL/(min·1.73 m2) for three months
or more, regardless of cause (Levey et al., 2005).
Generally, CKD progresses slowly with no obvious
symptoms in the early stage. Once it reaches the ad-
vanced stage, the risk of complications and prema-
ture death will increase greatly (El Nahas and Bello,
2005). Therefore, treatment for CKD focuses on
slowing the progression of the kidney damage. Early
screening is the most effective measure to help pre-
vent or delay the progression of the disease in CKD
patients (Ecder, 2013). Currently, CKD has become
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one of the most serious global health problems. It
is of great importance to explore an accurate, safe,
and cost-effective approach for CKD diagnosis in the
general population.

The typical screening techniques are computer-
ized tomography (CT), magnetic resonance imaging
(MRI), and ultrasonography. However, due to radi-
ation, contrast agents, and contraindications during
the examination of CT and MRI, patients with end-
stage CKD are at risk of aggravated kidney impair-
ment. In practice, ultrasound imaging has become
the preferred option for renal examination because
of its low cost and convenience in operation. In a
previous study, radiologists used contrast-enhanced
ultrasound to detect the malignancy of the kidney
(Chang et al., 2017); the results showed a high sensi-
tivity (96%) but a low specificity (50%). Apparently,
for a radiologist, visually analyzing ultrasound im-
ages to identify kidney lesions is a time-consuming
and challenging task.

With the aim of helping doctors make deci-
sions on the severity of CKD, many researchers have
proposed diverse diagnostic support methods (Ba-
tra et al., 2016). Machine learning methods have
been used to predict the CKD stage, with clinical
medical data including attributes like age, weight,
blood pressure, and glucose. These advanced clas-
sification algorithms involve artificial neural net-
work (ANN) (Jeewantha et al., 2017), naive Bayes
(Kunwar et al., 2016), K-nearest neighbor (KNN)
(Charleonnan et al., 2016), and support vector ma-
chine (SVM) (Ahmad et al., 2017). Although these
methods achieved high classification accuracy using
non-ultrasonography data, they required the collec-
tion of a wide variety of clinical data. Other studies
which centered on computer-aided diagnosis (CAD)
have been demonstrated to assist doctors in inter-
preting information from medical images. Several
approaches based on ultrasonic image analysis to
identify CKD have been presented, for example, ap-
plying image processing techniques to calculate the
ratio of kidney fibrosis and distinguish the stage of
CKD (Ho et al., 2012; Pujari and Hajare, 2014). Fea-
tures designed from the local binary pattern (LBP)
and Nakagami distribution, presented by Hsieh et al.
(2014), were classified by SVM for CKD screening.
Acharya et al. (2019) extracted higher-order features
and elongated quinary patterns from B-mode im-
ages, and classified features by SVM to detect CKD.

Iqbal et al. (2017) reported texture features from the
region of the kidney and explored the differences be-
tween normal and diseased regions. So far, the stud-
ies on CKD using ultrasound images are limited. Re-
markably, texture features of ultrasound images are
critical information, and they are often used for the
segmentation of kidney (Subramanya et al., 2015)
and recognition of renal cysts (Subramanya et al.,
2015; Sharma and Virmani, 2016).

In recent years, deep learning techniques have
been increasingly employed in CAD, particularly
convolutional neural networks (CNNs), since they
provide a framework for discriminating feature ex-
traction and classification (Shin et al., 2016). Chen
et al. (2015) used a recurrent neural network to de-
tect the fetal standard plane based on ultrasound
videos. Up to now, there is little research carried out
on deep learning in CKD screening using ultrasonic
images, but similar problems have been addressed.
For instance, to assess congenital abnormalities of
the kidney and urinary tract, Zheng et al. (2019)
used pre-trained weights from ImageNet and applied
features to an SVM classifier. Dhindsa et al. (2018)
suggested a seven-layer CNN to evaluate prenatal
hydronephrosis from kidney ultrasound images. De-
spite great potentials, classical deep learning models
do not perform outstandingly on ultrasound images
as they do on natural images. The main deficiency
is attributed to inadequate medical image data that
easily lead to the overfitting of the model. This com-
mon issue is related to data acquisition and high-cost
professional annotation. To deal with this limitation,
we suggest using a pre-trained CNN as an initializa-
tion for training (Shen et al., 2015), to transfer the
representation abilities from a large-scale dataset.
According to the common research, we also suggest
combining domain texture features to provide more
information for decision making.

In this study, we present a novel CNN frame-
work with a texture branch, called the texture branch
network (TBN), for distinguishing CKD based on
kidney ultrasound images. The model consists of
a base network and a texture branch. The texture
branch is organized as a residual structure (He et al.,
2016), generating optimized texture features from
the input image. At the end of the network, different
types of features are fused for classification.

By introducing the TBN model into the CKD
screening task, there are two contributions:
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1. To the best of our knowledge, this is the first
end-to-end approach using deep learning to figure
out CKD diagnostic classification based on ultra-
sound images. Our innovative model, which inte-
grates deep features and domain texture features as
multi-level description, achieves an excellent classifi-
cation accuracy.

2. Employing transfer learning manner to train
partial model parameters shows a good performance
under the unbalanced, limited-sample ultrasonic im-
age dataset.

2 Method

The proposed TBN model consists of a base net-
work, a texture branch, and dense layers for classifi-
cation. The base network makes full use of the ex-
pressive power of convolution layers to describe the
deep features of images. The designed texture fea-
tures are extracted as input and evolved by a texture
branch. The fusion features of two parts are classi-
fied by dense layers. The architecture of our model
is shown in Fig. 1. The details of this model will be
explained in the following subsections.

2.1 Base network

The base network is constructed as the back-
bone of our CNN framework. To learn effective
features from a limited number of samples, an ap-
propriate network structure should be considered.
Although complex deep networks have a strong ex-

pressive capacity, they are also likely to fall into the
dilemma of overfitting. ResNet-34 (He et al., 2016)
was chosen for this task in practice due to the moder-
ate model complexity. There are a total of 34 learn-
able layers contained in the ResNet-34 network. The
input of the network is region of interest (ROI) of the
kidney, which is resized as a uniform size of 224×224.
Each ROI is first processed by a convolutional layer
with kernel size 7×7, and each kernel produces a
two-dimensional (2D) feature map. The following is
a 3×3 max-pooling layer with a stride of two, which
reduces the size of feature maps, then four resid-
ual blocks, an average pooling operation, and a fully
connected layer. In each residual block, two convolu-
tional layers are laid in sequence with kernel size 3×3.
The architecture is shown in Table 1. As the input
image goes deeper through residual blocks, the size
of feature maps decreases gradually while the num-
ber of feature maps increases. To adapt the network
to our binary classification task of CKD screening,
the original fully connected layer of 1000 neurons is
replaced by two added fully connected layers with

Table 1 Architectures of residual blocks in ResNet-
34∗

Layer Replication
Number of

Output size
channels

Residual block 1 3 64, 64 56×56
Residual block 2 4 128, 128 28×28
Residual block 3 6 256, 256 14×14
Residual block 4 3 512, 512 7×7
∗ Each residual block contains two convolutional layers (3×3,
3×3)

Texture feature
extraction Texture branch

Input image

Base network

GLCM-based
features

HOG-based
features

Fig. 1 Architecture of the proposed texture branch network (TBN) model
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256 and two neurons, respectively.

To obtain a potent representation ability of
CNN for images, even on small-sample medical
datasets, the weight parameters of the base network
were initialized by a transferred ResNet-34, which
was trained on the ImageNet dataset (Oquab et al.,
2014) in this study. This transfer learning manner
allows the model to be closer to the optimal param-
eters in the initial training, accelerates the conver-
gence speed of the network, and reduces the risk of
overfitting.

2.2 Feature extraction and texture branch

Parenchymal fibrosis is a manifestation of CKD.
It increases with disease progression and reveals ab-
normal texture patterns in kidney ultrasonography.
Texture features will be extracted to afford richer
information for accurate judgment.

2.2.1 GLCM-based texture feature extraction

The gray-level co-occurrence matrix (GLCM)
(Haralick et al., 1973) considers the spatial relation-
ship of pixel gray levels in an image. The calculation
of GLCM involves distance and angle to reflect the
comprehensive information of the image in the direc-
tion and interval. Totally 16 GLCMs are computed
under the distance counted 1, 2, 3, 4 and orienta-
tions of 0◦, 45◦, 90◦, 135◦. It should be noted that
for a given matrix P , the values of P0,i and Pi,0

(i ∈ [0, N − 1], N is the maximum gray level of in-
put image and N equals 256 in practice) should be
set to 0 to eliminate the interference of non-echo ar-
eas. Each GLCM is generally used for a series of
second-order texture calculations. We produced the
features according to five common measures, con-
trast, dissimilarity, homogeneity, energy, and corre-
lation, resulting in 80-dimensional features from a
total of 16 GLCMs for an analyzed image.

For a given GLCM P with probability Pi,j , the
five different texture measure calculations are defined
as follows:

Contrast =
N−1∑

i,j=0

Pi,j(i − j)2, (1)

Dissimilarity =

N−1∑

i,j=0

Pi,j |i− j|, (2)

Homogeneity =

N−1∑

i,j=0

Pi,j

1 + (i− j)2
, (3)

Energy =

N−1∑

i,j=0

√
P 2
i,j , (4)

Correlation =

N−1∑

i,j=0

Pi,j

⎡

⎣ (i− μi)(j − μj)√
σ2
i σ

2
j

⎤

⎦ , (5)

where the mean μ and variance σ2 ofP are calculated
as

⎧
⎨

⎩
μi =

∑N−1
i,j=0 iPi,j ,

μj =
∑N−1

i,j=0 jPi,j ,
(6)

⎧
⎨

⎩
σ2
i =

∑N−1
i,j=0 Pi,j(i − μi)

2,

σ2
j =

∑N−1
i,j=0 Pi,j(j − μj)

2.
(7)

These features are standardized by the Z-score
manner according to different groups.

2.2.2 Histogram of oriented gradient based texture
feature extraction

Another widely used texture descriptor is the
histogram of oriented gradient (HOG). This feature
is based on the statistical information of the gra-
dient in an image, which reflects the edge of a local
object (Dalal and Triggs, 2005). To extract the HOG
feature, an image is divided into numerous small
squared regions called cells. In each cell, an HOG is
calculated, and this denotes the texture description
of the cell. These cells will form a larger connected
region (blocks). The HOG feature of a block is ob-
tained after normalization by concatenating feature
vectors of all cells belonging to it. Consequently, the
HOG features of an image implemented by combin-
ing the gradient statistics of all blocks, and described
as magnitude M and direction θ for pixel (x, y), are
calculated as

M(x, y) =
√
G2

x(x, y) +G2
y(x, y) (8)

and
θ(x, y) = arctan

Gx(x, y)

Gy(x, y)
, (9)

where Gx(x, y) and Gy(x, y) represent the horizontal
and vertical gradient values of the image pixel at
(x, y), respectively. They are defined as

Gx(x, y) = F (x+ 1, y)− F (x− 1, y) (10)
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and

Gy(x, y) = F (x, y + 1)− F (x, y − 1), (11)

where F (x, y) is the pixel value at (x, y) in the image.

2.2.3 Texture branch

After extracting texture features from an image,
a k-dimensional feature vector v can be obtained,
and k is set to 80, 324, or 404 for the GLCM feature,
HOG feature, or both, respectively.

The texture branch is constructed as a residual
structure. It contains three fully connected layers
and a skip-connection. The size of the output vector
Vtexture of this branch is equal to that of input v, and
the number of neurons in all the three fully connected
layers is set to k. Each fully connected layer is fol-
lowed by consecutive operations of batch normaliza-
tion, ReLU activation function, and dropout (0.5),
to enhance the capability of anti-overfitting for the
model. The feature vector v will be added directly
to the output of the 3rd fully connected layer via
skip-connection. The result of the addition of these
two vectors constitutes the output vector Vtexture.
The purpose of this design is to learn an optimized
texture feature vector through training.

2.3 Texture branch network model

A deep CNN is capable of classifying images.
However, it focuses mainly on complex features and
ignores the mining of low-level features. Considering
that ultrasonic images present a mass of low-level
information such as texture, we introduce the texture
branch to a typical CNN structure, forming the TBN
model. For any image put into the model, Vdeep and
Vtexture are generated from the base network and
texture branch in parallel. After a fusion operation,
a combined feature vector Vcomb = [Vdeep, Vtexture]

can be obtained, where [·] means the concatenation
of vectors.

The fusion operation is connected to dense lay-
ers for classification. The dense layers are specif-
ically the two fully connected layers mentioned in
Section 2.1, and the second layer has two nodes which
correspond to classes of CKD and normal. To mea-
sure the classification error, cross entropy loss was
chosen as the loss function and we used the initial-
ization algorithm suggested by He et al. (2015) to
initialize the weights of fully connected layers in the
TBN.

3 Chronic kidney disease screening

Before inputting ultrasound images to the pro-
posed model, preprocessing is needed. The prepro-
cessing phase includes ROI extraction and artificial
marker repair. Then the data are augmented for
training and classification. Finally, the performance
should be examined by separated test images.

3.1 Dataset

A total of 226 ultrasound images were involved
in this study, each one containing annotation about
the stage of CKD as noted by professional radiol-
ogists (stages I–V were classified as diseased and
stage 0 as normal). All ultrasound images were ac-
quired at kidney routine clinical care from Tongde
Hospital of Zhejiang Province, China. Some of the
images bore markings made by radiologists. The
personal information of patients involved in the data
had been removed. One hundred and eighty subjects
presented by the kidney ultrasound images were di-
agnosed as CKD, covering all stages of conditions
from CKD-I to CKD-V. The remaining 46 subjects
were normal.

3.2 Preprocessing

A portion of these ultrasound images were artifi-
cially marked by radiologists to record the location of
renal region, cortical thickness, etc. As Fig. 2a dis-
plays, artificial markers occlude the texture region
and break the integrity of an image, and this affects
adversely image analysis. Hence, these markers are
to be removed and repaired. First, we converted the
image to a grayscale one, due to the high bright-
ness of the mark. The threshold method was used
to determine the suspected marking areas, and these
pixels were labeled as

mi,j =

{
1, fi,j ≥ T,

0, fi,j < T,
(12)

where f is the input gray image, fi,j the pixel value,
T the threshold, andm the output binary image. For
fi,j ∈ S, where S = {(i, j)|mi,j = 1}, we adopted a
fast marching method (FMM) based inpainting al-
gorithm for restoration (Telea, 2004). For pixel p

located on the boundary of region to be inpainted,
the approximation I(p) can be given by

I(p) =

∑
q∈R(p) w(p, q) [I(q) +�I(q)r]

∑
q∈R(p) w(p, q)

, (13)
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where R(p) is a small neighborhood around p, q is a
point in R(p), r is the vector from q to p, and w(p, q)

a weighting function defined as

w(p, q) =
r � T (p)

‖r‖3 (1 + |T (p)− T (q)|) , (14)

where T (k) is calculated via FMM depending on
whether k is on the boundary of the region to be in-
painted. This algorithm computes the approximate
value and fills from the periphery of the region to
the central area through continuous iteration, until
all the regions of markers are restored. As Fig. 2b
shows, the markers are entirely repaired.

(a)

(b)

Fig. 2 Removal and reparation of artificial markers
in an ultrasound image: (a) image with markers; (b)
image after inpainting

The original images show a large echo region, in-
cluding the kidney and other peripheral organ parts.
To eliminate the interference of irrelevant areas and
reduce the computational burden of the model, we
manually cropped the kidney and uniformed the size
to 224×224.

3.3 Data augmentation

Compared with other computer vision tasks, the
cost for medical image acquisition and labeling is
high, and the available datasets are limited. In addi-
tion, the distribution of categories is unbalanced, and

the positive samples are nearly four times as many as
negative samples. This kind of class-imbalance data
is biased to model learning. To this end, the original
ultrasound images should be processed to expand
the size of examples available. We augmented the
data as follows: (1) short-step shifts in random di-
rections; (2) rotation in micro angles (no more than
two degrees); (3) random gray-level transformation
of pixels (≤ 3%). Based on the particularity of ul-
trasonic images, it is not feasible to make dramatic
adjustments to them, because it may change the tex-
ture information and make the labels unavailable.

4 Experiments and results

To verify the effectiveness of the proposed
method, we conducted experiments in accordance
with the procedure described in the previous section.
One hundred and eighty CKD and 46 normal sam-
ples were examined. Because of insufficient data, we
adopted the assessment approach of five-fold cross
validation. These subjects were divided into five
equal groups randomly for training and testing. One
group was taken out each time as a test set, and the
rest as the training set. After data augmentation,
864 images for training were obtained, and the num-
bers of positive and negative samples in the training
set were balanced.

4.1 Evaluation criteria

We set the objects with CKD as positive sam-
ples and the normal objects as negative samples.
The performance was evaluated by average classifica-
tion accuracy, sensitivity, specificity, and area under
curve (AUC) across the test set. The formulae are
as follows:

Accuracy =
TP + TN

TP + FP + TN+ FN
× 100%, (15)

Sensitivity =
TP

TP + FN
× 100%, (16)

Specificity =
TN

TN+ FP
× 100%, (17)

where TP, FP, TN, and FN represent the num-
bers of true positives, false positives, true negatives,
and false negatives obtained by classification, re-
spectively. Because of the unbalanced distribution
of positive and negative samples, it is not sufficient
to simply consider the accuracy. Comprehensively
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referring to these indicators makes assessments more
meaningful (López et al., 2013).

4.2 Classification

We first attempted to use the conventional ma-
chine learning approach to classify ultrasound images
with only texture features, to observe the benefits
of texture information for ultrasound-guided CKD
screening. HOG and GLCM features were selected;
in addition, another commonly used texture feature,
LBP, was tried. SVM was chosen as the classifier,
and the kernel function conformed to a polynomial
kernel. The results are shown in Table 2. The
method based on LBP features achieved the lowest
accuracy, whereas HOG and GLCM texture features
had similar good accuracy. The fusion features com-
bining HOG with GLCM showed the optimal per-
formance, and gave an accuracy of 88.48% and AUC
score of 0.9096. However, all these methods led to
low specificity.

For the proposed deep model, we made a se-
ries of experiments and comparisons. All the deep
networks were trained using the stochastic gradient
descent (SGD) optimizer with momentum of 0.9. We
trained the data by batch learning, with the batch
size set to 64. Since the size of the training dataset
was small, the network fitted rapidly, and we chose
40 epochs for training as the standard procedure. In
addition, the initial learning rates of models were
defined within the range of [0.001, 0.01]. Because of
the different numbers of parameters in diverse mod-
els, the learning rate of the beginning phase was ad-
justed in specific situations. For example, the initial
learning rate of TBN with texture branch handling a
single type of feature was set at 0.005, and it would be
multiplied by 0.2 per eight epochs. To cope with the
problem of overfitting, L2-norm regularization with
a weight decay coefficient of 2× 10−4 was deployed.

Table 2 Classification performance of texture features
under machine learning methods

Method ACC (%) AUC SE (%) SP (%)

LBP+SVM 67.72 0.7534 68.89 63.04
HOG+SVM 83.18 0.8850 87.79 65.22
GLCM+SVM 83.14 0.8746 87.22 67.39
HOG+GLCM+SVM 88.48 0.9096 92.22 73.91

ACC: accuracy; AUC: area under curve; SE: sensitivity; SP:
specificity. LBP: local binary pattern; SVM: support vector
machine; HOG: histogram of oriented gradient; GLCM: gray-
level co-occurrence matrix

To verify the superiority of the TBN model,
we compared the performance of TBN models with
those of several other methods, including those us-
ing only the base network in various training ways,
texture branch with different texture features, and
a method presented by Zheng et al. (2019). The
results are summarized in Table 3. The method sug-
gested by Zheng et al. (2019) was applied to screen
congenital anomalies of the kidney and urinary tract
in their work, in which HOG feature and pre-trained
AlexNet feature were classified by SVM. We imple-
mented this method and tested it on our dataset. In
practice, ResNet-34 was selected as the base network
for our task because of its moderate model com-
plexity, while other deeper CNNs such as ResNet-
101 and DenseNet would fall into overfitting on our
dataset. ResNet-34 (S) means training from scratch,
while ResNet-34 (T) implies transfer learning. It can
be seen that the CNN under the transfer learning
method provides a better performance than training
from scratch, for the current application. Therefore,
we took transfer learning as the default configuration
for TBN to train the partition of the basic network.
We evaluated various texture branches handling tex-
ture features based on HOG, GLCM, and a fusion
of them, which are labeled as texture branch (H),
texture branch (G), and texture branch (HG), re-
spectively. TBN models with diverse texture branch
were tested in the same way. In general, the TBN
model received more comprehensive image informa-
tion and avoided the negative effects of an inade-
quate training dataset. Thus, the accuracy of var-
ious TBN models is higher than that of ResNet-34
or texture branch alone. Among these methods, the
greatest accuracy was given by TBN-G, achieving an

Table 3 Comparison of the performance of TBN with
those of different texture branch and other related
methods

Method ACC (%) AUC SE (%) SP (%)

ResNet-34 (S) 85.40 0.8914 91.67 60.87
ResNet-34 (T) 91.15 0.9498 96.67 69.57
Texture branch (H) 79.20 0.8344 82.22 67.39
Texture branch (G) 78.31 0.8208 79.44 73.91
Texture branch (HG) 79.65 0.8467 80.56 76.08
Zheng et al. (2019) 85.40 0.8818 90.00 67.39
TBN-H 93.36 0.9409 96.67 80.43
TBN-G 96.01 0.9710 99.44 82.44
TBN-HG 95.13 0.9688 97.22 86.96

ACC: accuracy; AUC: area under curve; SE: sensitivity; SP:
specificity. The highest values are in bold
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accuracy of 96.01%, an AUC score of 0.9710, and a
sensitivity of 99.44%. The performance of the TBN-
H method was lower than that of the former, and
the accuracy of the TBN-HG model which combines
the two texture features was also slightly inferior to
that in the optimal case, but it showed the highest
specificity of 86.96%.

5 Discussion

In this study, we demonstrate that a CNN
framework with a texture branch can be applied to
CKD screening based on ultrasound images. As an
additional structure for texture feature extraction
and optimization, the texture branch offers a typi-
cal CNN model which diversifies information. Com-
pared to the performance of SVM using fused tex-
ture features and ResNet-34 under transfer learning,
the accuracy of identifying CKD was improved by
7.53% and 4.86%, respectively in the TBN-G model;
in terms of specificity, the results revealed benefits
of 13.05% and 17.39% improvement in the TBN-HG
model, respectively.

Notably, the specificity of classification revealed
benefits (17.39% improvement compared to pure
ResNet-34) in the TBN-HG method. Although it
seems that the accuracy is lower than that of the
TBN-G model that extracts only GLCM-based fea-
tures, considering the small number of normal sam-
ples in our dataset, it can be predicted that the per-
formance of a model using multi-texture features will
be better than that using single-texture features if
the data volume can be improved and the classes
tend to be balanced.

As mentioned in Section 1, the gold standard
for diagnosis and staging of CKD is on the basis
of GFR, which is estimated by biochemical testing.
Therefore, it is challenging to judge CKD based on
only pathological lesions reflected in ultrasound im-
ages, even for professional radiologists. After all,
the extent of lesion within the renal parenchyma
does not perfectly match the differentiation in renal
echogenicity, especially in the early stage of CKD.
To confirm that, we counted the samples misclas-
sified by the TBN-HG model and found that most
of the false-negative samples were in the early stage
(labeled as CKD-I). Some typical wrongly classified
cases are displayed in Fig. 3, It can be seen that
originally healthy images but classified as diseased

(Figs. 3c and 3d) contain some abnormal shadowing
areas appearing around the kidney. These abnor-
mal echoes are called ultrasound artifacts, which are
commonly encountered but affect the quality of an
ultrasound image, particularly the visual characteris-
tics of the texture. These artifact noises may mislead
the model to CKD cases diagnosed with renal cysts,
which also have some regular hypoechoic areas.

(a) (b)

(c) (d)

Fig. 3 Examples misclassified by the TBN-HG model:
(a) false negative sample (CKD-I actually); (b) false
negative sample (CKD-II actually); (c, d) false posi-
tive samples (normal actually)

The unbalanced distribution of positive and neg-
ative samples increases the risk of bias on classifica-
tion. Consequently, it is essential to capture more
images and category balance should also be consid-
ered in the data acquisition phase. With a diversified
data distribution, the learning capacity of deep mod-
els can be better performed, theoretically.

In future work, we intend to explore effective
screening methods in larger datasets, maintaining a
high sensitivity of classification while continuing to
improve specificity. We also plan to explore the CKD
staging challenge, which is a multi-classification task.

6 Conclusions

We presented a novel TBN model for
ultrasound-guided CKD screening, which used
a texture branch to extract texture descriptors
and supplement the deep features from a CNN.
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Our results showed the great potential of the deep
learning method in the CKD classification problem.
In addition, under the limitation of an unbalanced
small-sample dataset, the scheme of fusing texture
features and deep features, combined with the
training approach of transfer learning, showed
an excellent classification accuracy. Due to high
sensitivity, the proposed method has the potential
to be applied as computer-aided screening for CKD.
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